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1. Introduction 

The Army is researching processing science to enable adaptive mobile manufacturing of 

indigenous materials. Of particular focus, is the ability to make powders from battlefield scrap 

and general waste materials in-situ on the battlefield forward operating base (FOB). This study 

focused on polyethylene terephthalate (PET), the common material used to make the vast 

number of water bottles available as waste on an FOB. The hope is that this powder could then 

be used in manufacturing processes on FOBs, in order to create new materials and products of 

potential use to the Warfighter. This capability would reduce the logistics tail required to fortify 

these FOBs, thereby reducing the vulnerable convoys that deliver the materiel. One such 

example could be the formation of polymeric coatings (1) or perhaps for use in three-

dimensional (3-D) printing applications. Among different techniques used to reduce the particle 

size of metals, ceramics, and polymers, ball milling is widely used (2, 3). However, for 

polymers, size reduction by milling is a challenge due to the difficulties with the repeated 

fracturing and cold welding of polymer particles. It has been demonstrated that if the milling was 

performed at relatively low-temperature (e.g., liquid nitrogen [LN2] temperature [–196 °C]), in 

other words, cryomilling, it was possible to reduce the particle size of polymers (4, 5). 

Cryomilling has been employed to produce powders of many different polymers (6–15), to 

facilitate production of polymers in powder form, and to enable manufacturers to make parts in 

any shape from polymer powders while avoiding such difficulties as high viscosity and 

insolubility associated with conventional processing techniques (4). Cryomilling can also be 

performed by milling the starting powders within LN2 with milling balls forming a slurry during 

milling (16). To distinguish it from conventional cryomilling, we will call the process of milling 

in an attritor—where the powder is in intimate contact with LN2— “cryogenic attrition.” 

Recently it has been demonstrated at the U.S. Army Research Laboratory (ARL) that it was 

possible to reduce the particle size of a thermoplastic polymer by cryogenic attrition (16).  

For this research herein, we have employed three different techniques to grind millimeter (mm)-

size small scrap pieces of water bottles using (1) the Retsch Ultra Centrifugal Mill ZM 200 (ZM 

200) with scooping LN2, (2) the Retsch CryoMill (both were performed at Retsch), and (3) 

cryogenic attrition performed at ARL. Particle size of the ground powder obtained using the 

three aforementioned techniques was measured and the efficiency of the techniques was 

compared. The results are presented herein. Although cryomilling might not yet be able to be 

performed in an FOB environment, this study is considered a proof-of-concept to determine that 

usable powder could be produced from waste water bottles for further processing.  
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2. Experimental 

PET water bottles were shredded using a commercial paper shredder. The size of the shredded 

pieces varied from 2–10 mm length and 1–3 mm width. The thickness of the shredded pieces 

was less than 1 mm thick (figure 1). 

 

Figure 1. Shredded PET material. 

A total of 9.5 g of the shredded scrap starter material was milled for 3 min in an Ultra 

Centrifugal Mill ZM 200 rotating at 18,000 rpm with scooping LN2. In the ZM 200, the starting 

material was fed onto a rotor and size reduction took place via impact and shearing effects 

between the rotor and a fixed-ring sieve.  

In the Retsch cryomill, 3 g of the scrap starter material were prechilled for 5 min at LN2 

temperature and then transferred to a 50-ml cylindrical grinding jar with one 1-in-diameter 

stainless steel grinding ball. The scrap starter material was milled by radial oscillations of the jar 

in a horizontal position where the inertia of the grinding ball caused them to impact with high 

energy on the sample material for subsequent grinding. The grinding jar was continually cooled 

with LN2.  

For cryogenic attrition at ARL, 100 g of shredded PET were milled in liquid nitrogen for 4 h in a 

1S Szegvari attritor (Union Process, Akron, OH) modified to allow for continuous flow of LN2 

with 0.25-in-diameter stainless steel balls and a powder-to ball ratio of 1:64. Figure 2 shows a 

schematic design and photo of a typical cryogenic attritor along with that of the one available at 

ARL (18).  
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Figure 2. (a) A schematic of cryogenic attrition, (b) a cryogenic attrition mill in 

action, (c) and the cryogenic attrition mill at ARL. 

After 4 h of cryogenic attrition, a slurry containing the milled product and LN2 was collected. 

After the LN2 boiled off, it was found that the discharged product contained about 40 g of milled 

powder mixed with some large (lengths greater than 1 mm), unmilled flakes. Those large flakes 

were sieved and separated from the powder.  

Particle size distribution (PSD) measurements were carried out using a Horiba LA-910 Laser 

Light Scattering Particle Size Analyzer. This instrument measures particle size by shining a laser 

through sample particles that have been suspended in a small liquid bath; any clear liquid that the 

particles will be suspended in (they cannot sink or float) can be used. For the milled PET 

powders, ethanol was found to be a suitable suspending agent. Images of the powders were taken 

via scanning electron microscopy (SEM). A Hitachi S-4700 field emission scanning electron 

microscope (FESEM) was used to examine the morphology of the three milled powder samples. 

 

A B

C
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3. Results and Discussion 

The material that was produced by the Retsch ZM200 mill was “huge” compared to the two 

cryomilled (Retsch and ARL) powders; individual particles could be easily discerned by the eye 

(figure 3). As a result, the powder produced via the ZM200 was not examined further. 

 

Figure 3. Powder produced via ZM200 rotary mill. 

For data reproducibility, four Horiba measurments were made for each cryomilled powder. The 

PSD graphs of all four measurements for the Retsch and ARL cryomilled powders are collected 

in figures 4 and 5. The average particle size diameters for each run are collected in tables 1  

and 2. 

 



5 

 

Figure 4. PSD graphs for the four measurements made on the Retsch cryomilled material. 

 

Figure 5. PSD graphs for the four measurements made on the ARL cryomilled material. 
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Table 1. Retsch cryomilled PET PSD averages. 

 M1 M2 M3 M4 Average 

Mean (um) 39.60 45.23 50.74 41.91 44.37 

Medium (um) 32.31 34.91 41.28 35.04 35.885 

Mode (um) 36.67 36.70 48.04 36.77 39.545 

 

Table 2. ARL cryomilled PET PSD averages. 

 M1 M2 M3 M4 Average 

Mean (um) 29.96 45.23 29.79 31.47 29.98 

Medium (um) 23.87 34.91 23.91 25.67 24.26 

Mode (um) 32.02 32.08 32.02 36.54 33.17 

 

The PSD data show that the ARL cryomilled material is finer than the Retsch cryomilled 

material; the PSD graph shows a higher percentage of very small particles in the ARL material, a 

smaller percentage of very large particles, and smaller average (mean, median, and mode) 

diameter values. SEM micrographs also show that the large particles in the Retsch material are 

larger than the large particles in the ARL material (figure 6) and that the average particles are 

also larger in the Retsch material (figure 7).  
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Figure 6. A comparison of typical large particles found in the Retsch material (a and b) and in the ARL material (c 

and d). 

 

A B

C D
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Figure 7. A comparison of the typical particles found in the Retsch material (a and b) and in the ARL material  

(c and d). 

4. Conclusions and Future Research 

To grind mm-size small scrap pieces of water bottles into powder form, three different 

techniques have been employed: (1) the Retsch Ultra Centrifugal Mill ZM 200 (ZM 200) with 

scooping LN2, (2) the Retsch CryoMill (both were performed at Retsch), and (3) cryogenic 

attrition performed at ARL. The particle size distribution of the milled powder obtained from 

each cryogenic technique was measured. The ARL cryogenic attrition produced the smallest 

particles, in both size and distribution. Longer milling times and different material to ball ratios 

could be used to produce smaller particles. The milling parameters could be tailored to make 

particles in a specific size range. This technique is scalable and potentially kilogram quantities of 

materials could be efficiently ground into powder form once the milling parameters are 

optimized.  

A

D

B

C
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The challenge presented here is to recycle a commonly available material (in this case, PET) into 

an acceptable starter material in the field for use in further processing. It is recognized that the 

methods and equipment used herein to transform water bottles into powder form are not expected 

to be easily translated onto the battlefield, but the intent here is to produce enough powder to 

show viability as a “proof-of-concept.”  
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3-D  three-dimensional 

ARL  U.S. Army Research Laboratory 

FESEM field emission scanning electron microscope 

FOB  forward operating base 

LN2  liquid nitrogen 

mm  millimeter 

PET  polyethylene terephthalate 

PSD  particle size distribution 

SEM  scanning electron microscopy
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